Help for selecting population features (single gene)

HGPGD database v1.0

For each autosome gene region among 11 HapMap populations, we measured the differences of SNPs in each gene region using 10 indicators: (1) allele frequency (2) Fst (3) r^2 (4) Dprime (5) Block number (6) Block size (7) SNP density (8) Haplotype diversity (9) tagSNP percent (10) captured percent (11) average max r^2 .

These indicators are mainly related to three main aspects: the allele frequency (allele frequency and Fst), LD pattern (r², Dprime, Block number, Block size, SNP density and Haplotype diversity) and transferability of tag SNPs (tagSNP percent, captured percent and average max r²), that were usually used for comparing samples from different populations [1-6] and reflecting some population genetic characteristics.

Allele frequency differences

We measured the average differences of allele frequency for each gene region between pair-wise HapMap populations. The minor allele in HapMap ASW population was used as the reference. For each gene region, we defined the difference of allele frequency $diff_{maf}(i, j)$ as follows:

$$diff_{maf}(i, j) = \frac{1}{N} \sum_{k=1}^{N} |maf_{k,i} - maf_{k,j}|$$

Where i, j are HapMap populations (1:ASW, 2:CEU, 3:CHB, 4:CHD, 5:GIH, 6:JPT, 7: LWK, 8:CEX, 9:MKK, 10:TSI, 11:YRI). N is the number of SNPs in a gene region. $maf_{k,i}$ is the frequency of the k th SNP in population i, $maf_{k,j}$ is the frequency of the k th SNP in population j. A larger $diff_{maf}$ indicates a higher difference of allele frequency in the gene region among 11 HapMap populations, on the contrary a smaller $diff_{maf}$ indicates a lower difference.

Fst. We measured the average Fst for each gene region between pair-wise HapMap populations. The $diff_{Fst}(i, j)$ were calculated in the same way as $diff_{maf}(i, j)$.

LD pattern differences differences

For each gene region, six indicators about LD pattern were calculated.

r² differences (LD coefficient r² differences) We calculated pairwise LD coefficient r² between all pairwise SNPs (less than 500kb). The differences of r² $diff_{r^2}(i, j)$ were calculated in the same

way as $diff_{maf}(i, j)$.

Dprime differences (D' differences). We calculated pairwise D' between all pairwise SNPs (less than 500kb). The differences of D' $diff_{Dprime}(i, j)$ between pairwise populations were calculated in the same way as $diff_{maf}(i, j)$.

Block number differences For each gene region, Four Gamete Tests (FGT)[7] was used to identify the haplotype block structure, and the block number within the gene region was calculated. The differences of block number $diff_{block_num}(i, j)$ were calculated in the same way as

 $diff_{maf}(i, j)$.

Block size differences The average size of blocks within the gene region was calculated. The differences of average block size $diff_{block_size}(i, j)$ were calculated in the same way as $diff_{maf}(i, j)$.

SNP density differences The average SNP density of blocks within the gene region was calculated. The differences of average SNP density of blocks $diff_{SNP_dens}(i, j)$ were calculated in the same way as $diff_{maf}(i, j)$.

Haplotype diversity differences For each block in each gene region, haplotype diversity[4] was computed as $h = (1 - \sum x_i^2)n/(n-1)$, where x_i was the frequency of a given haplotype and n was the number of samples, and average haplotype diversity was defined as the average value of haplotype diversity in block regions. The differences of average haplotype diversity $diff_{hap}_{-div}(i, j)$ were calculated in the same way as $diff_{maf}(i, j)$.

In this study, haploview v4.1[8] was used to identify haplotype block and to estimate haplotype frequency by expectation-Maximization (EM) algorithm.

Transferability of tagSNP differences

There were three indicators about the transferability of tagSNP.

TagSNP percent differences For each gene region, an aggressive tagging strategy by TAGGER panel in haploview was used to identify tagSNPs (r^2 threshold is 0.8). The tag percent was defined as the number of tagSNPs divided by the total number of SNPs in a gene region. The differences of tagSNP percent $diff_{tag_{perc}}(i, j)$ were calculated in the same way as $diff_{maf}(i, j)$.

Captured percent differences For example, for ASW population, if an ASW SNP exhibited pairwise $r^2>0.8$ with at least one tagSNP selected from the CEU population, then the SNP was

defined as captured SNP by CEU panel in the ASW population[4], and captured percent was defined as the number of captured SNPs divided by the total number of SNPs in ASW population.

The differences of captured percent $diff_{Cap perc}(i, j)$ were calculated in the same way as

 $diff_{maf}(i, j)$.

Average maximum r^2 differences For each gene region, average maximum r^2 was defined as the average value of the maximum r^2 between tagSNPs in one HapMap population and SNPs captured by these tagSNPs in another population. Captured percent and Average maximum r^2 were used to evaluate the efficiency of tagSNPs in one population to capture SNPs in another population. The

differences of average maximum $r^2 diff_{max r^2}(i, j)$ were calculated in the same way as

 $diff_{maf}(i, j)$.

- 1. De Bakker, P.I., R.R. Graham, D. Altshuler, et al., *Transferability of tag SNPs to capture common genetic variation in DNA repair genes across multiple populations*. Pac Symp Biocomput, 2006: p. 478-86.
- 2. Service, S., J. DeYoung, M. Karayiorgou, et al., *Magnitude and distribution of linkage disequilibrium in population isolates and implications for genome-wide association studies*. Nat Genet, 2006. **38**(5): p. 556-60.
- 3. Marvelle, A.F., L.A. Lange, L. Qin, et al., *Comparison of ENCODE region SNPs between Cebu Filipino and Asian HapMap samples.* J Hum Genet, 2007. **52**(9): p. 729-37.
- Ribas, G., A. Gonzalez-Neira, A. Salas, et al., *Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes*. Hum Genet, 2006. 118(6): p. 669-79.
- 5. Xing, J., D.J. Witherspoon, W.S. Watkins, et al., *HapMap tagSNP transferability in multiple populations: general guidelines.* Genomics, 2008. **92**(1): p. 41-51.
- 6. Lundmark, P.E., U. Liljedahl, D.I. Boomsma, et al., *Evaluation of HapMap data in six populations of European descent*. Eur J Hum Genet, 2008. **16**(9): p. 1142-50.
- 7. Wang, N., J.M. Akey, K. Zhang, et al., *Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation.* Am J Hum Genet, 2002. **71**(5): p. 1227-34.
- 8. Barrett, J.C., B. Fry, J. Maller, et al., *Haploview: analysis and visualization of LD and haplotype maps.* Bioinformatics, 2005. **21**(2): p. 263-5.